

iBT20-UART COMBO

Command and Response

Doc. Name:iBT20-UARTCombo-Rev0.2.01.docxDate:17 February, 2017Revision:0.2.01

Copyright ©, 2017 by Engineering Department, Valence Semiconductor Design Limited. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means without the prior written permission of Valence Semiconductor Design Limited.

Table of Content

1.	GE	NERAL DESCRIPTIONS	4
	11	INTERFACING SIGNALS	5
	UART	SFTTING	5
_			
2.	IBI	-20 DEMO BOARD	6
	2.1.	IBT-20 Demo Board Schematic	6
	2.2.	IBT-20 DEMO BOARD COMPONENT SIDE SILK SCREEN	6
	2.3.	IBT-20 Demo Board Connectors	7
	2.3.	1. CN1 - To CP2102 USB -to-UART Interface Board	7
	2.3.	2. CN2 - To External MCU	7
	2.3.	3. J1, J3, J6 Jumpers	7
	2.3.	4. J2 – Header	7
	2.3.	5. J4, J7 – DRDY Sense	8
	2.3.	6. J5 - Header	8
	2.3.	7. J9 - Header	8
	2.3.	8. J12 - Jumper	8
	2.3.	9. J13 - Jumper	8
3.	CO	MMUNICATIONS	9
	2.1		
	3.1.	PACKET FORMAT	9
	3.2.	COMMAND AND RESPONSE	9
4.	CO	MMANDS	.10
	<i>I</i> 1	CMD ADV ENABLE $(0y01)$	11
	4.1. 4.2	$CMD_ADV_DISABLE(0x01)$	11
	43	CMD_READ_STATUS (0x03)	11
	4.4.	CMD_WRITE_DATA(0x04)	.13
	4.5.	CMD READ DATA (0x05)	.13
	4.6.	CMD DISCON (0x06)	.13
	4.7.	CMD_READ_ADC (0x07)	14
	4.8.	CMD_READ_RSSI (0x08)	.14
	4.9.	CMD_READ_FEATURE (0x09)	.15
	4.10.	CMD_SET_CON_INTERVAL (0x0A)	.15
	4.11.	CMD_SET_DEVICE_NAME (0x0B)	.17
	4.12.	CMD_SET_UART_BR(0x0C)	.17
	4.13.	CMD_OAD_MODE(0xFF)	.18
5.	PRO	OFILES	.19
	GATT	– PROPRIETARY	.19
	5.2.	DEVICE INFORMATION - STANDARD	.19
	5.3.	BATTERY SERVICE - STANDARD	.19

iBT20-UART COMBO Command and Response

Table of Figures

Figure 1 System Block Diagram	4
Figure 2 iBT20 Module	5
FIGURE 3 COMMAND AND RESPONSE BEHAVIOR	9
Figure 4 Command Category	.10
Figure 5 Read Status Flow	.12

1. General Descriptions

Figure 1 System Block Diagram

iBT20-UART COMBO (iBT20) is a Bluetooth LE module designed for data transfer between a host microcontroller (Host- μ C) and a BLE central device, normally a mobile phone. Table 1 below shows the supporting models of the iBT20 module.

Model Number	Supporting Profile and Service	Firmware Code
iBT20-UC-GT	Device Information Profile GATT Profile Battery Service	XAA1101xx.hex

 Table 1 iBT20-UART Model Table

1.1. Interfacing Signals

Figure 2 iBT20 Module

The iBT20 module communicates with the Host-µC through the UART interface together with a data ready (DRDY) status signal.

iBT20 Module		1/0	Description	
Pin No Name		1/0		
11 (DIO8)	TX	Output	This is the iBT20 UART transmit data pin. It is to be connected to the UART receive data pin of the Host- μ C	
7 (DIO11) RX		Input	This is the iBT20 UART receive data pin. It is to be connected to the UART transmit data pin of the Host- μ C	
17 (DIO3)	DRDY	Output	This pin is used to indicate to the Host- μ C that data is ready for it to receive or a change in connection status. It should be connected to an external interrupt pin of the Host- μ C. This pin will be in input mode after iBT20 power up reset. An external pull-up / pull-down resistor is required to be added to this pin for setting up its inactive state. When a pull-down resistor is added to this pin, a low to high change (rising edge) on this pin indicates for data ready. When a pull-up resistor is added to this pin, then a high-to-low change (falling edge) on this pin indicates for data ready.	
24 (ADC1)	AIN0	Input	Analog Input	
25 (ADC2)	AIN1	Input	Analog Input	

 Table 2 Interface Signals

UART Setting

For correct communication between the iBT20 and the Host- μ C, please configure the Host- μ C's UART port as below

Baud Rate	:	9600 (power up default)
No. of Data Bit	:	8
No. of Stop Bit	:	1
Parity	:	No parity

2. iBT-20 Demo Board

2.1. iBT-20 Demo Board Schematic

2.2. iBT-20 Demo Board Component Side Silk Screen

2.3. iBT-20 Demo Board Connectors

2.3.1. CN1 - To CP2102 USB --to-UART Interface Board

This connector is used to connect iBT-20 to a PC through a USB-to-UART adaptor dongle. *Please note that when CN1 is connected, CN2 must be removed.*

Pin Number	Name	Туре	Description
1	NC		No Connect
2	NC		No connect
3	5V	Power	5V Power Input from External
4	GND	Power	Ground
5	BT-TX	Output	Bluetooth UART TX signal
6	BT-RX	Input	Bluetooth UART RX signal

2.3.2. CN2 - To External MCU

This connector is used to connect iBT-20 to an external MCU. Please note that when CN2 is connected, CN1 must be removed.

Pin Number	Name	Туре	Description
1	DRDY	Output	Data Ready Signal
2	5V	Power	5V Power Input from External
3	GND	Power	Ground
4	BT-TX	Output	Bluetooth UART TX signal
5	BT-RX	Input	Bluetooth UART RX signal

2.3.3. J1, J3, J6 Jumpers

These 3 jumpers are used to connect / disconnect the below signals from iBT-20 to CN1 connector

Jumper	Position	Description
I 1	Open	Disconnect BT-TX signal to CN1
JI	Close	Connect BT-TX signal to CN1
12	Open	Disconnect DRDY signal to DRDY Test Point
12	Close	Connect DRDY signal to DRDY Test Point
IG	Open	Disconnect BT-RX signal to CN1
10	Close	Connect BT-RX signal to CN1

2.3.4. J2 - Header

Pin Number	Name	Туре	Description
1	3.3V	Power	3.3V Power Output
2	GND	Power	Ground
3	BT-TX	Input	Bluetooth UART TX signal
4	BT-RX	Output	Bluetooth UART RX signal
5	DIO7	I/O	General Purpose I/O Pin
6	3.3V	Power	3.3V Power Output
7	RESETN	Input	Active low iBT-20 module reset
8	DIO13	I/O	General Purpose I/O Pin
9	DIO9	I/O	General Purpose I/O Pin
10	DIO12	I/O	General Purpose I/O Pin

2.3.5. J4, J7 – DRDY Sense

These 2 jumpers are used to select the in-active state of the DRDY signal. Only one jumper should be connected

Jumper	Position	Description
14	Open	Not connected
J4	Close	The DRDY signal is active low
17	Open	Not connected
J /	Close	The DRDY signal is active high

2.3.6. J5 - Header

Pin Number	Name	Туре	Description
1	BT-TX	Output	Bluetooth UART TX signal
2	DRDY	Output	Data Ready Signal
3	BT-RX	Input	Bluetooth UART RX signal
4	DIO1	I/O	General Purpose I/O Pin
5	DIO2	I/O	General Purpose I/O Pin
6	DIO4	I/O	General Purpose I/O Pin
7	DIO0	I/O	General Purpose I/O Pin
8	DIO5	I/O	General Purpose I/O Pin
9	DIO6	I/O	General Purpose I/O Pin
10	GND	Power	Ground

2.3.7. J9 - Header

Always short together. Not used.

Jumper	Pin	Description
IO	1	Shorted on PCB to J9 pin 2
19	2	Shorted on PCB to J9 pin 1

2.3.8. J12 - Jumper

This jumper can be used to connect an external analog voltage to ADC2 pin for analog signal measurement. The voltage level must lie between GND and 3.3V.

Jumper	Pin	Description
110	1	Not connected
J12	2	Connect to iBT-20 ADC2 pin for analog voltage measurement

2.3.9. J13 - Jumper

This jumper, when closed will connect ADC1 with DIO14 pin.

Jumper	Pin	Description
J13 -	1	Connect to iBT-20 ADC1 pin for analog voltage measurement
	2	Connect to iBT-20 DIO14 pin

3. Communications

P Packet based communication is used between the Host- μ C and the iBT20 module. All communications are controlled by the Host- μ C. The Host- μ C initiates a command packet and the iBT20 responses a with a response packet to the requesting command. In case that iBT20 has data to be sent to the Host- μ C, it can activate the DRDY signal to request the Host- μ C to initiate a command packet.

3.1. Packet Format

All commands, data and responses are transferred in packet format. Each packet starts with a Start of Packet (SOP) and ends with an End of Packet (EOP). Commands, responses and parameters and filled in between the SOP and EOP.

There are 3 characters that need to be special handled inside the command and parameter field. They are the SOP (0xA5), EOP (0xA6) and the Special Character Header (SCH, 0x5A). These 3 characters will be coded in the transmitting side and decoded in the receiving side.

Symbol	Original Data	Coded Data
SOP	0xA5	0x5A, 0x5A
EOP	0xA6	0x5A, 0x5C
SCH	0x5A	0x5A, 0x5B

3.2. Command and Response

In order to save power, the iBT20 will enter power save mode after completing a command. A UART activity will wake up the iBT20 from power save mode. During wake up, iBT20 may not be able to receive a complete packet sending from the host uC and so no response packet will be issued from it. The Host- μ C, if cannot receive the iBT20 response packet after waiting for T_{RES} (response time) should assume that the previous packet has been loss and retransmit the packet to iBT20 until a valid response packet has received.

4. Commands

Commands can be divided into two categories.

Cat1 commands are communicated between the Host- μ C and iBT20 only. Cat1 commands are used for setting up the functionality and getting the status of the iBT20 module.

Cat2 commands are communicated between the Host- μ C, through iBT20 to the remote BLE central device. Cat2 commands are used for transferring data between the BLE central and the BLE peripheral.

Figure 4 Command Category

Code	Name	Category	Category Description	
0x01	CMD_ADV_ENABLE		Enable BT Advertisement	\$1,\$3,\$4
0x02	CMD_ADV_DISABLE		Disable BT Advertisement	S2,S3,S4
0x03	CMD_READ_STATUS		Read BT Status	\$1,\$2,\$3,\$4
0x06	CMD_DISCON		Disable Connection	S4
0x07	CMD_READ_ADC	- 1	Read ADC Value from VDD, ADC1 and ADC2	\$1,\$2,\$3,\$4
0x08	CMD_READ_RSSI		Read RF RSSI	S4
0x09	CMD_READ_FEATURE		Read iBT20 Feature	\$1,\$2,\$3,\$4
0x0A	CMD_SET_CON_INTERVAL		Set BT Connection Interval	S1 & S3
0x0B	CMD_SET_DEVICE_NAME		Set BT Device Name	S1 & S3
0x0C	CMD_SET_UART_BR		Set UART Baud Rate	S5
0x04	CMD_WRITE_DATA	2	Send Data to BLE Central	<u>S</u> 4
0x05	CMD_READ_DATA	2	Get Data from BLE Central	<u>S</u> 4

Table 3 Command Summary

S1 - advertisement off

S2 - advertisement on

S3 - non-connected

S4-connected

S5 - advertisement off and non-connected

4.1. CMD_ADV_ENABLE (0x01)

This command is used to enable iBT20 to send the advertisement packet at a fixed interval of time defined by the ADV_INV parameter. This command can also be used to change the advertising interval. The time between each advertisement packet, the advertisement interval, can be calculated by the below equation. For example, $ADV_INV=0x00A0$ means an advertising interval of 100mS. The power-up default of the advertising interval is 1.28S, $ADV_INV = 0x0800$.

Advertising Interval = 0.625ms x ADV_INV[15:0]

The range of the advertising interval, as defined in the Bluetooth specification, should be between 20mS to 10.24S. That is, the value of ADV_INV should be in between 0x0020 to 0x4000. iBT20 will not perform the validity check of the ADC_INV, it is the responsibility of the Host-µC to send an in-range ADV_INV data.

An invalid CMD_ADV_ENABLE command caused by either missing or invalid ADV_INV parameters, will cause iBT20 to stop executing the command, same behavior as not receiving the command.

Command from Host-µC

Function	Length (byte)	Value	Description
SOP	1	0xA5	
Command Code	1	0x01	CMD_ADV_ENABLE
Parameter #1	1	ADV_INV[7:0]	Low Byte of ADV_INV
Parameter #2	1	ADV_INV[15:8]	High Byte of ADV_INV
EOP	1	0xA6	

Response from iBT20

For successful command

Function	Length (byte)	Value	Description
EOP	1	0xA6	Command executed successfully

4.2. CMD_ADV_DISABLE (0x02)

This command is used to disable the iBT20 from sending the advertisement packet.

Command from Host-µC

Function	Length (byte)	Value	Description
SOP	1	0xA5	
Command Code	1	0x02	CMD_ADV_DISABLE
EOP	1	0xA6	

Response from iBT20

For succeeded command

Function	Length (byte)	Value	Description
EOP	1	0xA6	Command executed successfully

4.3. CMD_READ_STATUS (0x03)

This command is used to get the status of the iBT20 module. It will also report to the Host- μ C if there have data that can be read from the write property UUIDs, data wrote to iBT20 by the BLE central. In this case, the DRDY signal will also be set to the active state. Byte 3 and Byte 4 of the response packet will indicate the UUID that has data. Host- μ C, should issue a read data command, CMD_READ_DATA, with the indicated UUID to get back the data.

If there's only one UUID has data to be read, iBT20, after receiving the read data command to the UUID and sending out the data to the Host- μ C, will de-activate the DRDY signal and further CMD_READ_STATUS command will response with the byte1 bit 3= '0' and no UUID parameter bytes.

If there are more than one UUID has data to be read, iBT20, after receiving the read data command to the UUID, will keep the DRDY signal in active state and further CMD_READ_STATUS command will response with the byte1 bit 3= '1' and the UUID number of the next data ready port.

Please note that the DRDY signal will also be activated for a change in connection state, ie. change from disconnect state to connected state and vice versa. In this case, there should be no UUID data follows.

								_			Packet f	rom Host	uC
	CMD_READ_ST	ATUS Re	sponse to Read State	us CMD_REAL	D_DATA	Response to	o Read DATA			_		·DT4	
)			Packet f	rom IB11	1
RDY								_					
	Multiple	UUIDs I	have data	to be Read	ł								
	Multiple	UUIDs I	have data	to be Read	d				£				
		Response to Read Status	have data	to be Read	CMD_READ _STATUS	Response to Read Status	CMD_READ _DATA	Response to Read DATA		CMD_READ _STATUS	Response to Read Status	CMD_READ _DATA	Response to Read DATA

Figure 5 Read Status Flow

Command from Host-µC

Function	Length (byte)	Value	Description
SOP	1	0xA5	
Command Code	1	0x03	CMD_READ_STATUS
EOP	1	0xA6	

Response from iBT20

For succeeded command, without UUID data

Function	Length (byte)	Value	Description
SOP	1	0xA5	
Response #1	1	STATUS	Bit 0 = 1, Connected Bit 1 = 1, Bonded Bit 2 = 1, Advertising Bit 3 = 0, No Data for Host-μC to read 1, connection state change notification Bit4 – bit 7, RFU
EOP	1	0xA6	

For succeeded command, without UUID data

Function	Length (byte)	Value	Description
SOP	1	0xA5	
Response #1	1	STATUS	Bit $0 = 1$, Connected Bit $1 = 1$, Bonded Bit $2 = 1$, Advertising Bit $3 = 1$, Data Ready for Host uC to read
			Bit $3 = 1$, Data Ready for Host- μ C to read Bit $4 = bit 7$, RFU
Response#2	1	UUID[7:0]	The UUID that has data for Host- μ C to read. These
Response#3	1	UUID[15:8]	2 bytes only exists if bit3 of response#1 is set to '1'
EOP	1	0xA6	

4.4. CMD_WRITE_DATA (0x04)

This is a Category 2 command used for the Host- μ C to send data to the BLE Central device. This command is only applicable in the Bluetooth connected mode.

Command from Host-µC

Function	Length (byte)	Value	Description
SOP	1	0xA5	
Command Code	1	0x04	CMD_WRITE_DATA
UUID #0	1	UUID[7:0]	Low byte of the UUID to be sent data
UUID #1	1	UUID[15:8]	High byte of the UUID to be sent data
data #1 to data #n	n		Data to be sent to the UUID
EOP	1	0xA6	

Response from iBT20

101 succeeded command			
Function	Length (byte)	Value	Description
EOP	1	0xA6	Command executed successfully

4.5. CMD_READ_DATA (0x05)

This is a Category 2 command used for the Host- μ C to get data from the BLE Central device. This command is only applicable in the Bluetooth connected mode.

Command from Host-µC

Communa from 110st-pc			
Function	Length (byte)	Value	Description
SOP	1	0xA5	
Command Code	1	0x05	CMD_READ_DATA
UUID #0	1	UUID[7:0]	Low byte of the UUID to be sent data
UUID #1	1	UUID[15:8]	High byte of the UUID to be sent data
EOP	1	0xA6	

Response from iBT20

For succeeded command

Function	Length (byte)	Value	Description
SOP	1	0xA5	
data #1 to data #n	n		Data to be read from UUID
EOP	1	0xA6	

4.6. CMD_DISCON (0x06)

This command is used to terminate a BLE connection with the BLE Central Device. If iBT20 is not in the connection state when receiving this command, iBT20 will still response with an EOP to signify to Host- μ C that it is in disconnected state. iBT20 will only response with an ERP only if it cannot disconnect from the BLE central due to whatever reason.

Command from Host-µC

Function	Length (byte)	Value	Description
SOP	1	0xA5	
Command Code	1	0x06	CMD_DISCON
EOP	1	0xA6	

Response from iBT20 For succeeded command

Function	Length (byte)	Value	Description		
EOP	1	0xA6	iBT20 disconnected from BLE Central		

4.7. CMD_READ_ADC (0x07)

This command is used to control the iBT11 to perform ADC conversion for specific input. There are 4 different analog sources This command is used to control the iBT20 to perform ADC conversion for specific input. There are 3 different analog sources can be select by this command. Table 4 below lists the different ADC sources. An internal reference source will be used for the reference voltage of the analog-to-digital converter with a resolution of 10-bits. Each ADC conversion takes around 1mS to complete. Host- μ C, after issuing this command, should wait until result available which will be pushed from iBT20 to Host- μ C automatically.

Source	Analog Source	Location	Description	Measured Result
0	VDD	iBT20 internal	This can be used to check the battery voltage when iBT20 is supplied from battery directly	Result = VDD voltage in mV scale
1	ADC1	External pin	This can be used to check any external voltage source	Result = ADC1 voltage in mV scale
2	ADC2	External pin	This can be used to check any external voltage source	Result = ADC2 voltage in mV scale

Table 4 ADC Source

Command from Host-µC			
Function	Length (byte)	Value	Description
SOP	1	0xA5	
Command Code	1	0x07	CMD_READ_ADC
Source	1	ADC_INPUT	Select for the ADC conversion source 0x00 - VDD $0x01 - ADC10x02 - ADC2Others - invalid$
EOP	1	0xA6	

Response from iBT20 For succeeded command

1 of succeeded command			
Function	Length (byte)	Value	Description
SOP	1	0xA5	
ADC_LVL[15:0]	1	ADC_LVL[7:0]	Converted ADC voltage in mV scale
	1	ADC_LVL[15:8]	Converted ADC voltage in inv scale
EOP	1	0xA6	

4.8. CMD_READ_RSSI (0x08)

This command is used to read the receive signal strength (RSSI) of the iBT20 module. The RSSI is only available after iBT20 is connected.

Command from Host-µC

Function	Length (byte)	Value	Description
SOP	1	0xA5	
Command Code	1	0x08	CMD_READ_RSSI
EOP	1	0xA6	

Response from iBT20

For succeeded command

Function	Length (byte)	Value	Description
SOP	1	0xA5	
RSSI	1	RSSI[7:0]	RSSI in dBm (2's complement)
EOP	1	0xA6	

4.9. CMD_READ_FEATURE (0x09)

This command is used to read the firmware version and the supported feature of iBT20.

Command from Host-µC

Function	Length (byte)	Value	Description
SOP	1	0xA5	
Command Code	1	0x09	CMD_READ_FEATURE
EOP	1	0xA6	

Response from iBT20

For succeeded command

Function	Length (byte)	Value	Description
SOP	1	0xA5	
Sub-minor Version	1		iBT20 firmware version in
Minor Version	1		MajorVersion.MinorVersion.Sub-minorVersion
Major Version	1		format
Feature	2	Supporting Profiles	Supported Profiles Each bit represents a supported profile. A value of '1' means profile is supported Bit 0 : Device Information profile Bit 1 : GATT Profile Bit 2 – 14 : reserved Bit 15 : Battery Service
EOP	1	0xA6	

4.10. CMD_SET_CON_INTERVAL (0x0A)

This command is used to set the connection interval of iBT20. The connection interval is the time between 2 connections initialized by a BLE Central. It can be used when advertisement is off and is not connected to any central. From the Bluetooth specification, connection interval can be ranged from 7.5mS to 4000mS with a resolution of 1.25mS. Furthermore, a Connection Latency parameter can also be set by this command. In order to reduce power consumption, a BLE peripheral can be designed to response once per a certain number of consecutive connection events. The number of consecutive events that the BLE peripheral will not response is the Connection Latency.

There are 9 pre-defined settings that can be selected by user or user can set the CON_INV and CON_LAT parameters by themselves. When pre-defined setting is used, excluding the command byte, one additional parameter is required, Table 5. When user want to define their own connection parameters, then excluding the command byte, 9 more parameters are required, Table 6.

CON ODT	Connectio	on Interval	Slava Latanav	Time and
CON_OPT	Min	Max	Slave Latency	Timeout
0x00	40 (50mS)	160 (200mS)	0	1 S
0x01	40 (50mS)	160 (200mS)	2	2S
0x02	40 (50mS)	160 (200mS)	4	4S
0x03	80 (100mS)	400 (500mS)	0	2S
0x04	80 (100mS)	400 (500mS)	2	5S
0x05	80 (100mS)	400 (500mS)	3	6S
0x06	400 (500mS)	800 (1000mS)	0	4S
0x07	400 (500mS)	800 (1000mS)	1	6S
0x08	240 (300mS)	480 (600mS)	2	6S
0x80	User define	User define	User define	User define

Command from Host-µC (use pre-defined setting)					
Function	Length (byte)	Value	Description		
SOP	1	0xA5			
Command Code	1	0x0A	CMD_SET_CON_INTERVAL		
Connection Interval	1	CON OPT	Connection Interval		
Option	1	CON_OF I	others: Invalid		
EOP	1	0xA6			

Table 5 COM_SET_CON_INTERVAL Pre-defined Setting Command Format

Command from Host-µC (user defined connection parameter)

Function	Length (byte)	Value	Description
SOP	1	0xA5	
Command Code	1	0x0A	CMD_SET_CON_INTERVAL
Connection Interval Option	1	CON_OPT	Connection Interval 0x80: set by using the CON_INV and CON_LAT parameters others: Invalid
Connection Interval Min low	1	CON_INV_MN[7:0]	
Connection Interval Min high	1	CON_INV_MN[15:8]	The Connection Interval must lie between 0x0006
Connection Interval Max low	1	CON_INV_MX[7:0]	(7.5mS) to $0 \times 0 $
Connection Interval Max high	1	CON_INV_MX[15:8]	
Connection Latency low	1	CON_LAT[7:0]	The Connection Latency must lie between 0x0000 to 0x01F3. A value of 0x0 means iBT20 will response to every connection event. A value of 1 means that
Connection Latency high	1	CON_LAT[15:8]	iBT20 can response once per 2 connection events. A value of n means that iBT20 can response once per (n+1) connection events.
Connection Timeout low	1	CON_TO[7:0]	This is the time before a connection to terminate. The value must lie between 10 to 3200 which
Connection Timeout high	1	CON_TO[15:8]	represents a timeout of 100mS to 32S.
EOP	1	0xA6	

Table 6 COM_SET_CON_INTERVAL User Defined Setting Command Format

Response from iBT20 For succeeded command

For succeeded command			
Function	Length (byte)	Value	Description
EOP	1	0xA6	Command executed successfully

4.11.CMD_SET_DEVICE_NAME (0x0B)

This command is used to set the Bluetooth device name of iBT20. It can only be used when the advertisement is off and is not connected to any BLE central. The Bluetooth Device Name of iBT20 supports up to 14 characters. In order to differentiate products with same Bluetooth device name, parts of the Bluetooth Address can be concatenated to the device name. The concatenation of the Bluetooth address is an optional feature that can also be controlled by this command.

FunctionLength (byte)ValueDescriptionSOP10xA5Command Code10x0BCMD_SET_DEVICE_NAMEOption100PTDevice name and Connection option Bit 0 = 0, Disable concatenation of the BD Address to Device name Bit 0 = 1, Enable concatenation of the BD Address Device nameOption1OPTBit 0 = 1, Enable concatenation of the BD Address to Device nameDevice nameBit 1 = 0, Not Bond after connected Bit 1 = 1, Enable Bond after connected Bits 2-7 RFUDevice Name #0 to #141515 byte Device name, Device Name is a null terminated string, i.e. it is max 14 characters. All 15 bytes of Device Name MUST be transmitted dummy data should be packed to the string if it is shorter than 15 bytes. If connection Option bit 0 is set, the 3 least significant bytes of the BD address will be converte to ASCII and concatenated to the device name.EOP10xA6	Command from Host-µC			
SOP 1 0xA5 Command Code 1 0x0B CMD_SET_DEVICE_NAME Option 1 0PT Device name and Connection option Bit 0 = 0, Disable concatenation of the BD Address to Device name Option 1 0PT Bit 0 = 0, Disable concatenation of the BD Address to Device name Bit 1 = 0, Not Bond after connected Bit 1 = 1, Enable Bond after connected Bit 2-7 RFU Bit 1 = 1, Enable Bond after connected Bits 2-7 RFU Device Name #0 to #14 15 15 byte Device name, Device Name is a null terminated string, i.e. it is max 14 characters. All 15 bytes of Device Name MUST be transmitted dummy data should be packed to the string if it is shorter than 15 bytes. If connection Option bit 0 is set, the 3 least significant bytes of the BD address will be converte to ASCII and concatenated to the device name. EOP 1 0xA6	Function	Length (byte)	Value	Description
Command Code10x0BCMD_SET_DEVICE_NAMEOption1OPTDevice name and Connection option Bit 0 = 0, Disable concatenation of the BD Address to Device name Bit 0 = 1, Enable concatenation of the BD Address Device name Bit 1 = 0, Not Bond after connected Bit 2-7 RFUDevice Name #0 to #141515 bytes of Device Name MUST be transmitted dummy data should be packed to the string if it is shorter than 15 bytes. If connection Option bit 0 is set, the 3 least significant bytes of the BD address will be converter to ASCII and concatenated to the device name.	SOP	1	0xA5	
Option1OPTDevice name and Connection option Bit 0 = 0, Disable concatenation of the BD Address to Device name Bit 0 = 1, Enable concatenation of the BD Address Device nameOption1OPTBit 0 = 1, Enable concatenation of the BD Address Device name Bit 1 = 0, Not Bond after connected 	Command Code	1	0x0B	CMD_SET_DEVICE_NAME
Device Name #0 to #141515 byte Device name, Device Name is a null terminated string, i.e. it is max 14 characters. All 15 bytes of Device Name MUST be transmitted dummy data should be packed to the string if it is shorter than 15 bytes. If connection Option bit 0 is set, the 3 least significant bytes of the BD address will be converte to ASCII and concatenated to the device name.EOP10xA6	Option	1	ОРТ	Device name and Connection option Bit 0 = 0, Disable concatenation of the BD Address to Device name Bit 0 = 1, Enable concatenation of the BD Address to Device name Bit 1 = 0, Not Bond after connected Bit 1 = 1, Enable Bond after connected Bits 2-7 RFU
EOP 1 0xA6	Device Name #0 to #14	15		 15 byte Device name, Device Name is a null terminated string, i.e. it is max 14 characters. All 15 bytes of Device Name MUST be transmitted, dummy data should be packed to the string if it is shorter than 15 bytes. If connection Option bit 0 is set, the 3 least significant bytes of the BD address will be converted to ASCII and concatenated to the device name.
	EOP	1	0xA6	

Response from iBT20

For succeeded command

EOP 1 0xA6 Command executed successfully	Function	Length (byte)	Value	Description
	EOP	1	0xA6	Command executed successfully

4.12.CMD_SET_UART_BR(0x0C)

This command is used to set the UART communication baud rate between iBT20 and the Host- μ C. The power reset default baud rate is 9600. Host- μ C can change the baud rate to 19200, 38400, 57600 or 115200. iBT20, after receiving this command, will response a EOP packet to the Host- μ C and then re-configure the UART port to the use the new baud rate. Beginning with the next command sends from the Host- μ C, the new baud rate should be used.

Please note that this command is only valid in the non-connected mode. If this command is issued in the connected mode, a ERP will be returned.

Function	Length (byte)	Value	Description
SOP	1	0xA5	
Command Code	1	0x0C	CMD_READ_VER
New Baud Rate	1	BR	BR = 0, 9600 baud BR = 1, 19200 baud BR = 2, 38400 baud BR = 3, 57600 baud BR = 4, 115200 baud Others, invalid
EOP	1	0xA6	

Command from Host-µC

Response from iBT20

For succeeded command	For succeeded command					
Function	Length (byte)	Value	Description			
EOP	1	0xA6	Command executed successfully and the next received command should use the new baud rate			

4.13. CMD_OAD_MODE(0xFF)

It is used to set BT module to the Over The Air Download (OAD) mode such that its firmware can be downloaded over the air. iBT20 will be disconnected after the command is received successfully. It will be advertised again after a few seconds with the OAD device name of "iBT20 OTA Service Manager" and service. Then it will be ready for update over the air.

Command from Host-µC

<u> </u>			
Function	Length (byte)	Value	Description
SOP	1	0xA5	
Command Code	1	0xFF	CMD_OAD_MODE
SIG_CODE0	1	0x66	Signature Code
SIG_CODE1	1	0x44	Signature Code
SIG_CODE2	1	0x55	Signature Code
SIG_CODE3	1	0xAA	Signature Code
EOP	1	0xA6	

No response will be transmitted for this command.

5. Profiles

One propriety profile, one standard profile and one standard service are supported. They are the UART Profile, Device Information Profile and the Battery Service.

GATT – Proprietary

UUID	Туре	Properties	Description	Size / Bytes
0xFFF0	Service			
0xFFF3	Characteristics	Read	Battery Level (ADC Value)	1
0xFFF5	Characteristics	Read	RSSI	1
0xFFF6	Characteristics	Write	Data	8
0xFFF7	Characteristics	Read	Data	8
0xFFF8	Characteristics	Notify	Data	8
0xFFF9	Characteristics	Write	Data	Max. 20
0xFFFA	Characteristics	Read	Data	Max. 20
0xFFFB	Characteristics	Notify	Data	Max. 20
0xFFFC	Characteristics	Write without Response	Data	Max. 20

5.2. Device Information - Standard

UUID	Туре	Properties	Description
0x180A	Service		
0x2A29	Characteristics	Read	Manufacturer Name
0x2A24	Characteristics	Read	Model Number String
0x2A25	Characteristics	Read	Serial Number String
0x2A27	Characteristics	Read	Hardware Revision String
0x2A26	Characteristics	Read	Firmware Revision String
0x2A28	Characteristics	Read	Software Revision String
0x2A23	Characteristics	Read	System ID
0x2A2A	Characteristics	Read	IEEE 11073-20601 Regulatory Certification Data List
0x2A50	Characteristics	Read	PnP ID

5.3. Battery Service - Standard

UUID	Туре	Properties	Description
0x180F	Service		
0x2A19	Characteristics	Read / Notify	Battery Level (Percentage)